Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network

Mahmoud M. Elkholy, Ahmed Fathy *

Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt

A R T I C L E I N F O

Article history:
Received 24 June 2015
Received in revised form 17 August 2016
Accepted 19 September 2016
Available online 5 October 2016

Keywords:
Photovoltaic panel
Water pumping system
TLBO
ANN

A B S T R A C T

In this paper an optimal performance of three phase induction motor drives a centrifugal water pump and fed from photovoltaic (PV) system without storage elements during starting and running is presented. A three level three phase inverter is used to convert the DC voltage from the PV array to a variable voltage and frequency to supply the three phase induction motor. The output voltage and frequency of the inverter are controlled to extract the maximum power from solar panel during running at different levels of irradiance and temperatures using a Teaching Learning Based Optimization (TLBO) algorithm with minimum motor losses. The ratio of voltage magnitude and frequency is held within rated values to avoid saturation and motor overheating. The rating of PV array is chosen to develop the rated power of the pump at normal irradiance and temperature. The output voltage of the inverter is controlled during starting to prevent an excessive current from PV and to develop a torque larger than pump torque. An artificial neural network (ANN) is developed to give an optimal inverter voltage and frequency to extract maximum power from the PV array. The complete model is simulated using MATLAB/Simulink. The simulated results emphasize the significance of the proposed method to attain the maximum power from PV with minimum motor losses.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to increase in demands for energy around the world and the expected end of fossil fuel; renewable energy sources gained a great attention as alternatives. PV is one of the most important clean energy sources. A PV system composes PV cell which produces a direct current in case of falling solar radiation on its surface. The PV can be used for water-pumping application in remote areas (Masters, 2004), it raises water from a well or spring and stores in a tank for irrigation purpose. The PV-water pump system operation differs from that of the AC Mains powered pump, as they work under varying input power conditions.

Many previous studies in the point of optimal operation of the PV-water pump system have been presented and literature as follows.

An optimal strategy for operating the PV pumping system composes an induction motor driving a centrifugal pump has been introduced in Betka and Attali (2010) and Betka and Moussi (2004); it has been achieved by maximizing the motor efficiency and minimizing the machine losses. A hybrid GA-ANN algorithm has been introduced in Kulaksiz and Akkaya (2012) for minimizing the converter losses inserted in a PV system coupled with an induction motor. The matching of an induction motor driven water-pumping system to PV array in order to transfer maximum energy has been given in Akbaba (2007); a double step-up converter and six-step voltage source inverter have been embedded in this work. In Benlarbi et al. (2004), a fuzzy optimization approach to improve the global efficiency of a PV water pumping system and maximize the speed of drive then increasing water discharge rate has been presented. The optimal performance of the PV-water pump system driven by DC motor at different patterns of solar radiation and ambient temperature has been analyzed in Ghoneim (2006) and Jaziri and Jemli (2013). An optimization approach based on the detection of the optimal power flow between the PV system and water pump through the usage of maximum power point tracker has been given in Badoud et al. (2013). Takagi-Sugeno fuzzy approach has been developed in Ouachani et al. (2013) to extract the maximum power from the PV system feeding a water pump via DC motor. The usage of DC and induction motor as a part of multi and single
stage water pump system has been reviewed in Periasamy et al. (2015); additionally the various techniques of MPPT have been introduced. A single stage water pumping system comprises PV array, six-step square wave inverter, induction motor and centrifugal pump has been presented in Muljadi (1997). The maximum power of the PV array has been obtained by operating the inverter as variable frequency; additionally the losses due to switching process have been minimized. An optimal design algorithm based on photovoltaic opportunity irrigation (POI) applied on several sub-models represented PV generator, variable speed centrifugal pump and olive orchard has been implemented in Luque et al. (2015). An optimized stand-alone solar pumping system has been implemented in Corrêa and Silva (2012); the objective of this algorithm is to maximize the PV array efficiency using maximum power point tracking algorithm and minimize the induction motor losses. A linear actuated water pump driven by solar system has been optimized in Wade and Short (2012) to suit the PV power characteristic and hydraulic requirements. An optimization process for maximizing the quantity of water pumped from the water pump system driven from an induction motor with improving the induction motor efficiency by obtaining an optimum voltage-frequency relation to control the motor has been introduced in Betka and Moussi (2005); additionally the impact of changing the PV array temperature has been studied. The performance of induction motor-pump system for irrigation purpose supplied from PV system has been studied in Gumus and Yakut (2015) and Belgacem (2012).

In this paper a Teaching Learning Based Optimization (TLBO) algorithm is used to have the optimal values of inverter voltage and frequency to obtain a maximum power from PV and to minimize the losses of three phase induction motor drives a centrifugal water pump. ANN is built up to have PV maximum power point at any solar radiation and temperature. This maximum PV power is used as an input signal for other ANN to give optimal inverter voltage and frequency after trained by data obtained from TLBO algorithm. The field weakening method of reduced voltage and constant frequency is used to start the induction motor to avoid high starting current from PV. The complete system of PV array, three level inverter, three phase induction motor and centrifugal pump is simulated by MATLAB/Simulink.

2. Mathematical model

The system under study consists of photovoltaic array that composed of a number of modules of type First Solar FS-64 272, formed by the interconnection of 8 series connected modules per string and 3-parallel strings, 3-level 65 three phase inverter, 1.1 kW three phase induction motor and water pump load. The mathematical model of each part is given in this section.

2.1. PV array model

The PV cell is simulated by a parallel current source represents the photon current connected in parallel with a diode and series resistance. The PV cell output current is given as follows (El-arini et al., 2013; Fathy et al., 2013):

\[I = I_{ph} - I_D - I_p \] \hspace{1cm} (1)

\[I = I_{ph} - I_0 \left\{ \exp \left(\frac{V + IR_s}{aV_T} \right) - 1 \right\} - \left(\frac{V + IR_s}{R_p} \right) \] \hspace{1cm} (2)

where \(I_{ph} \) is the photon current which is generated by the sunlight striking the PV cell surface, \(I_0 \) is the saturation current of the diode, \(V \) and \(I \) are the cell voltage and current respectively, \(R_s \) and \(R_p \) are the cell series and parallel resistances respectively, \(a \) is the ideality factor of the diode and \(V_T \) is the thermal voltages of the diode. The PV array is formulated by connecting \(N_{ss} \) PV modules in series and \(N_{pp} \) PV modules in parallel.

\[N_{ss} \] = number of series strings

\[N_{pp} \] = number of parallel strings

\[I_{ph} \] = photon current

\[I_D \] = saturation current of the diode

\[V \] = cell voltage

\[I \] = cell current

\[R_s \] = cell series resistance

\[R_p \] = cell parallel resistance

\[\alpha \] = ideality factor of the diode

\[V_{th} \] = thermal voltages of the diode

\[N_{modules} \] = number of series modules

\[R_{arr} \] = PV array series resistance

\[R_{par} \] = PV array parallel resistance

\[V_{line} \] = the fundamental line voltage of the inverter

\[m \] = the modulation index

\[V_{ds} \] = d-axis stator voltage

\[V_{qs} \] = q-axis stator voltage

\[I_{ds} \] = d-axis stator current

\[I_{qs} \] = q-axis stator current

\[R_s \] = stator winding resistance

\[\lambda_{ds} \] = d-axis stator flux linkage

\[\lambda_{qs} \] = q-axis stator flux linkage

\[\omega_s \] = synchronous speed

\[I_{dR} \] = d-axis referred rotor current

\[I_{qR} \] = q-axis referred rotor current

\[R_e \] = referred rotor winding resistance

\[\lambda_{dR} \] = d-axis rotor flux linkage

\[\lambda_{qR} \] = q-axis rotor flux linkage

\[\omega \] = rotor speed

\[L_s \] = self-inductance of stator winding

\[L_g \] = referred self-inductance of rotor winding

\[M \] = mutual inductance

\[T_e \] = electromagnetic torque

\[J \] = moment of inertia

\[B \] = friction coefficient

\[TL \] = load torque

\[TLBO \] = teaching learning based optimization

\[ANN \] = artificial neural network

\[PV \] = photovoltaic

\[\gamma \] = ratio of maximum power of the PV array to the total power of the PV array

\[\eta \] = maximum PV power point tracking efficiency

\[\eta_{arr} \] = array efficiency

\[\eta_{in} \] = inverter efficiency
parallel strings as shown in Fig. 2, the current supplied from the PV array is written by:

$$I_{arr} = N_{pp} I_{ph} - N_{pp} I_0 \left\{ \exp \left(\frac{V + IR_{arr}}{2N_{pp} V_T} \right) - 1 \right\} - \left\{ \frac{V + IR_{arr}}{R_{par}} \right\}$$ \hspace{1cm} (3)

where R_{arr} and R_{par} are the series and parallel resistances of the PV array and given by Fathy (2015):

$$R_{arr} = \left(\frac{N_{ss}}{N_{pp}} \right) N S R_s$$ and $R_{par} = \left(\frac{N_{ss}}{N_{pp}} \right) N S R_p$ \hspace{1cm} (4)

2.2. Three level three phase inverter model

The three-level inverter consists of three arms of power switching devices. Each arm consists of four switching devices along with their antiparallel diodes and two neutral clamping diodes as shown in Fig. 3 (Rajesh and Manjesh, 2014). The switching states of one phase three level inverter are listed in Table 1.

The rms value of the fundamental line voltage of the inverter is given as:

$$V_{Lrms} = m \sqrt{\frac{3}{2}} 0.5V_{dc} = 0.6124mV_{dc}$$ \hspace{1cm} (5)

Table 1

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5V_{dc}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$-0.5V_{dc}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

where m is the modulation index which controls the amplitude of the fundamental component of the output voltage of the inverter. The modulation index must be greater than 0 and lower than or equal to 1.

There are advantages in the application of the three level neutral point clamped inverters fed three phase induction motor over conventional two level inverters as three level inverter can reduce harmonics in the output voltage and current due to the multilevel output voltage (Adrian and Kokkosis, 2011).

2.3. Three phase induction motor model

The mathematical model of squirrel cage three phase induction motor in the d-q frame is given as (Chiasson, 2005).

The voltage equations of three phase squirrel cage induction motor in d-q frame are listed as follows.

The stator voltage equations are:

$$V_{dS} = i_{dS} R_{st} + \frac{d}{dt} i_{dS} \omega_S \lambda_{qS}$$ \hspace{1cm} (6)

$$V_{qS} = i_{qS} R_{st} + \frac{d}{dt} i_{qS} + \omega_S \lambda_{dS}$$ \hspace{1cm} (7)

where V_{dS} is d-axis stator voltage, V_{qS} is q-axis stator voltage, i_{dS} is d-axis stator current, i_{qS} is q-axis stator current, R_{st} is stator winding resistance, λ_{dS} is d-axis stator flux linkage, λ_{qS} is q-axis stator flux linkage and ω_S is synchronous speed in rad/s.

The rotor voltage equations are:

$$0 = i_{dR} R_{st} + \frac{d}{dt} \lambda_{dR} - (\omega_S - \omega) \lambda_{qR}$$ \hspace{1cm} (8)
where i_{dR} is d-axis referred rotor current, i_{qR} is q-axis referred rotor current, R_R is referred rotor winding resistance, λ_{dR} is d-axis rotor flux linkage, λ_{qR} is q-axis rotor flux linkage and ω is the rotor speed in rad/s.

The flux linkages are defined by:

$$\lambda_{dS} = L_S i_{dS} + M_{dR}$$ \hspace{1cm} (10)$$

$$\lambda_{qS} = L_S i_{qS} + M_{qR}$$ \hspace{1cm} (11)$$

Table 2

The key specifications of the Solar FS-272 PV module.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open circuit voltage (Voc)</td>
<td>94.5738 V</td>
</tr>
<tr>
<td>Voltage at maximum power point (Vmp)</td>
<td>70.558 V</td>
</tr>
<tr>
<td>Short circuit current (Isc)</td>
<td>1.181 A</td>
</tr>
<tr>
<td>Current at maximum power point (Imp)</td>
<td>1.0109 A</td>
</tr>
<tr>
<td>Maximum power at STC (Pmax)</td>
<td>71.3271 W</td>
</tr>
<tr>
<td>Number of cells connected in series</td>
<td>116</td>
</tr>
<tr>
<td>Temperature coefficient of Isc</td>
<td>0.0005433 A/°C</td>
</tr>
<tr>
<td>Temperature coefficient of Voc</td>
<td>-0.269 V/°C</td>
</tr>
</tbody>
</table>

Fig. 4. (a) The physical configuration of the proposed system and (b) the Simulink model of the system.
\[k_dR = LR_{idR} + Mi_S(12) \]
\[k_qR = LR_{iqR} + Mi_S(13) \]

where \(L_S \) is self-inductance of stator winding, \(L_R \) is referred self-inductance of rotor winding, \(M \) is mutual inductance.

The electromagnetic torque equation is:

\[T_e = \frac{3}{2} M (i_{qR} i_{dR} - i_{dS} i_{qR}) \]
The mechanical equation of the motor and the load is:

\[T_e - T_L = J \frac{d\omega}{dt} + B\omega \] \hspace{1cm} (15)

where \(J \) is moment of inertia in kg m\(^2\), and \(B \) friction N.m.s.

The practical characteristic of 1.1 kW, 1440 rpm (150.8 rad/s) centrifugal pump can be given as (ETAP11):

\[T_L = 0.7634 - 0.0461\omega + 0.0011\omega^2 + 0.00003273\omega^3 \] \hspace{1cm} (16)

where \(\omega \) is pump speed in rad/s.

3. Characteristics of the proposed system

The proposed water pump system consists of a photovoltaic array which acts as a power supply source, connected to a pulse width modulation (PWM) 3-level three phase inverter, which converts the DC voltage to variable voltage variable frequency AC voltage in order to supply a three-phase induction motor. The physical configuration of the proposed system and the complete system description are shown in Fig. 4(a) and (b) respectively. In the proposed system; the PV array maximum power is extracted via a neural network approach at different solar radiation and temperature. The TLBO algorithm is used to have an optimal inverter frequency and voltage to forward this PV maximum power to water pump with minimum motor losses. Other ANN is trained by TLBO results to have an adaptive controller gives optimal inverter frequency and voltage.

3.1. PV array model characteristics

A photovoltaic array consists of a number of modules of type First Solar FS-272, formed by the interconnection of 8 series connected modules per string and 3 parallel strings, connected to provide the required voltage and current. The key specification of the PV module under study is given in Table 2 and the unknown parameter determination method is given in Ma et al. (2014). The characteristics of one module and the used array at 25 °C are shown in Fig. 5(a) and (b) respectively.

3.2. Neural network MPPT design

A neural network is designed to give the maximum PV power at certain solar radiation and ambient temperature. The ANN has two input layers of solar radiation and temperature and one output layer of maximum PV power. Practical data of solar radiation and ambient temperature measured by solar radiation and meteorological station located at National Research Institute of Astronomy and Geophysics Helwan, Cairo, Egypt are used to extract the PV maximum power which is a target of ANN model. The variation of mean square error of the network with epochs is shown in Fig. 6.

3.3. Water pump induction motor characteristics

In water pump induction motor system; the output power of the pump can be controlled by the variation of the motor voltage and frequency. The parameters of 4-pole, 220/380 V, 1.1 kW, 50 Hz three phase induction motor used to drive the water pump are listed as given in Table 3 (Elbarbary and Elkholy, 2013). The performance characteristics of the motor with V/f control method are given to determine the required motor input power to drive the water pump at different speeds. Fig. 7 shows the variation of motor developed torque and water pump torque with speed at which V/f control method is used. The operating speeds are the intersections of both motor and pump torques. Fig. 8 shows the variation of motor current with speed at different frequencies. It's shown that the starting current is higher than normal operating current and this starting current is higher than the short circuit current of the PV panel. Therefore stator voltage should be controlled during starting to limit the starting current provided that

![Fig. 8. Variation of motor current torque with speed.](image)

![Fig. 9. Variation of motor input power with speed.](image)

<table>
<thead>
<tr>
<th>Maximum PV power</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>340.6</td>
<td>8</td>
</tr>
<tr>
<td>784.1</td>
<td>25</td>
</tr>
<tr>
<td>1245</td>
<td>28</td>
</tr>
<tr>
<td>1400</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 4
Optimum starting slope on inverter voltage.
the motor torque is higher than the pump torque and starting current is lower than short circuit current of PV array. The optimal slope of increasing voltage at different levels of solar radiation and temperature are obtained using TLBO algorithm as shown in Table 4. The variation of motor input power with speed is shown in Fig. 9. The input power at lower frequencies is lower than one of rated frequency. Therefore, at different PV maximum power with different temperatures and irradiances, the inverter voltage and frequency are controlled to match drive power with PV maximum power.

4. Teaching learning based optimization algorithm (TLBO)

TLBO is a new meta-heuristic optimization algorithm that has been developed by Rao et al. (2011). It has been advisable to use

![Diagram of TLBO algorithm](image-url)

Fig. 10. The main steps of TLBO algorithm.

![Graph of optimal inverter frequency vs. PV maximum power](image-url)

Fig. 11. Variation of optimal inverter frequency with PV maximum power.
Fig. 12. Variation of optimal inverter output voltage with PV maximum power.

Fig. 13. Variation of the TLBO objective function with iterations.

Table 5

<table>
<thead>
<tr>
<th>PV max power (W)</th>
<th>TLBO method</th>
<th>PSO method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inverter frequency (Hz)</td>
<td>Slip</td>
</tr>
<tr>
<td>100</td>
<td>20.1073</td>
<td>0.0594</td>
</tr>
<tr>
<td>150</td>
<td>22.6665</td>
<td>0.0534</td>
</tr>
<tr>
<td>200</td>
<td>24.7387</td>
<td>0.0495</td>
</tr>
<tr>
<td>250</td>
<td>26.5183</td>
<td>0.047</td>
</tr>
<tr>
<td>300</td>
<td>28.1348</td>
<td>0.0453</td>
</tr>
<tr>
<td>350</td>
<td>29.5342</td>
<td>0.0423</td>
</tr>
<tr>
<td>400</td>
<td>30.9487</td>
<td>0.043</td>
</tr>
<tr>
<td>450</td>
<td>32.1477</td>
<td>0.0401</td>
</tr>
<tr>
<td>500</td>
<td>33.3355</td>
<td>0.0396</td>
</tr>
<tr>
<td>550</td>
<td>34.4459</td>
<td>0.0378</td>
</tr>
<tr>
<td>600</td>
<td>35.5396</td>
<td>0.0377</td>
</tr>
<tr>
<td>650</td>
<td>36.623</td>
<td>0.038</td>
</tr>
<tr>
<td>700</td>
<td>37.5719</td>
<td>0.0362</td>
</tr>
<tr>
<td>750</td>
<td>38.6102</td>
<td>0.0371</td>
</tr>
<tr>
<td>800</td>
<td>39.5359</td>
<td>0.0363</td>
</tr>
<tr>
<td>850</td>
<td>40.484</td>
<td>0.0362</td>
</tr>
<tr>
<td>900</td>
<td>41.3623</td>
<td>0.0361</td>
</tr>
<tr>
<td>950</td>
<td>42.3225</td>
<td>0.0366</td>
</tr>
<tr>
<td>1000</td>
<td>43.2131</td>
<td>0.037</td>
</tr>
<tr>
<td>1050</td>
<td>44.0822</td>
<td>0.0379</td>
</tr>
<tr>
<td>1100</td>
<td>44.9254</td>
<td>0.038</td>
</tr>
<tr>
<td>1150</td>
<td>45.8562</td>
<td>0.0386</td>
</tr>
<tr>
<td>1200</td>
<td>46.6963</td>
<td>0.0384</td>
</tr>
<tr>
<td>1250</td>
<td>47.5258</td>
<td>0.039</td>
</tr>
<tr>
<td>1300</td>
<td>48.3488</td>
<td>0.0398</td>
</tr>
<tr>
<td>1350</td>
<td>49.1907</td>
<td>0.0394</td>
</tr>
<tr>
<td>1400</td>
<td>50.0487</td>
<td>0.0396</td>
</tr>
</tbody>
</table>
TLBO in finding the global optimal solutions for continuous and nonlinear functions as it requires less computational time and gives high accurate results. The teaching process used in TLBO algorithm is based on the interaction between the teacher in a teaching class with students which is known as teacher phase and the interaction between two groups of students which is known as learner phase; through these two phases of learning the global optimal solution is obtained. A good teacher results in good learners as teacher is considered as the best person that transfers his knowledge to the learners. The main advantages of TLBO algorithms have been mentioned in Pawar and Rao (2013); it needs less controlling parameters such as the size of population, number of generations and number of iterations, additionally it is reliable algorithm that guarantees the obtaining of optimal solution not local one and easier than other meta-heuristic algorithms.

4.1. Teacher phase

In this stage of learning process; the students are learned through the teacher which is considered as the person who has the most...
experience and knowledge in a subject, therefore the teacher is considered as the best (optimal) solution in the classroom population. Practically the teacher moves the mean of his/her knowledge to the class based on the capability of the class and cannot move his/her full knowledge. One can describe the difference between the teacher result and mean result of learners as follows (Rao et al., 2011):

\[\text{Diff}_i = r_i(M_{\text{new}} - T_F M_i) \] \hspace{1cm} (17)

where \(M_{\text{new}} \) is the new obtained mean of the teacher after moving its mean knowledge to learners, \(M_i \) is the mean of transferred knowledge from teacher to students, \(r_i \) is a random value in range [0, 1] and \(T_F \) is the teaching factor which controls the mean value to be changed. The value of \(T_F \) can be either 1 or 2 based on the following equation:

\[T_F = \text{round}[1 + \text{rand}(0, 1)(2 - 1)] \] \hspace{1cm} (18)

Based on the difference between two means given in Eq. (17); the value of solution is updated as follows:

\[x_i^{\text{new}} = x_i^{\text{old}} + \text{Diff}_i \] \hspace{1cm} (19)
where x_{new}^i is the updated solution, x_{old}^i is the old solution. The new solution is accepted if its fitness function is better than the previous one. The accepted solution acts as input to the second stage of learning process which is learner phase.

4.2. Learner phase

In this stage of learning process; the knowledge is transferred to a group of students through the interaction with another group. In order to explain the learner phase, it is assumed that there are two groups of students group i and group j, with knowledge x_i and x_j, at the beginning of this process the fitness function of both groups are calculated and compared such that the knowledge has been updated based on the following formula:

$$x_{new}^i = x_{old}^i + r_i(x_j - x_i) \quad \text{if fit}(x_i) < \text{fit}(x_j)$$ (20)

$$x_{new}^i = x_{old}^i + r_i(x_i - x_j) \quad \text{if fit}(x_j) < \text{fit}(x_i)$$ (21)
where $fit(x_i)$ and $fit(x_j)$ are the fitness function of group i and j respectively. The updated solution, x_{new}, is accepted if its fitness function is better than the previous one. The flow chart represents the main steps of TLBO algorithm is given in Fig. 10.

5. Numerical analysis and results

The Teaching Learning Based Optimization method is used to obtain the optimal inverter voltage and frequency for certain maximum PV power to drive the water pump with minimum motor losses. The objective function is (OF) defined in Eq. (22) to minimize the motor losses with different constraints of Eq. (23).

$$OF = \text{Minimize} \left[3 \times (I_s^2R_{st} + I_r^2R_k + I_c^2R_c) \right]$$

where I_s is the stator current, I_r is the rotor current referred to stator, I_c is the core loss current and R_c is the core loss resistance.

$$OF = \begin{cases} \text{Minimize} & \left| \frac{P_{input} - P_{PV \, maximum \, power}}{P_{input}} \right| < 1 \\ \text{Minimize} & \left| \frac{T_{motor} - T_{pump \, torque}}{T_{motor}} \right| < 0.01 \\ \text{Minimize} & \frac{f}{f_{rated}} < 0.01 \end{cases}$$

Fig. 23. Variation of PV array power with time.

Fig. 24. Variation of pump speed with time.

Fig. 25. Variation of motor and pump torque with time.
The TLBO parameters used are population size = 50, maximum number of generations = 200, Variable numbers = 3. The design variables are frequency, voltage and slip. For each maximum power of solar panel the TLBO program is run for 20 times and the best result is recorded as shown in Figs. 11 and 12.

The variation of TLBO objective function for maximum power of 1300 W is shown in Fig. 13 for 20 running times. The ranges of TLBO variables frequency, voltages and slip respectively are lower limit = [45 180 0.0001] and upper limit = [50 220 0.4].

To validate the results of TLBO method, these results are compared with results of Particle Swarm Optimization (PSO) method as given in Table 5. It's shown that the two results are very close together. The parameters of PSO are: number of particles in swarm = 24 and maximum number of generations = 200.

To have a fast and adaptive controller, a feed-forward back propagation ANN is designed to give the optimal inverter voltage and frequency. The input of ANN is PV maximum power and the outputs of ANN are inverter voltage and frequency. The training data of ANN are the optimal voltage and frequency at each PV maximum power which are obtained using TLBO algorithm. The variation of mean square error is shown in Fig. 14.

After training of the ANN, the maximum PV power is given to the trained ANN and the output of inverter voltage and frequency are obtained. The variation of simulated result, target and the error between them are shown in Figs. 15 and 16.

The variation of motor efficiency with input power is shown in Fig. 17. The efficiency of the proposed method which to become the inverter voltage and frequency to obtain the maximum power

![Fig. 26. FFT for output voltage in case of 2 and 3 level inverter.](image)

![Fig. 27. FFT for motor current in case of 2 and 3 level inverter.](image)
from PV and operate the induction motor with minimum losses is higher than that of V/f method especially at light input powers. The motor efficiencies of two methods are very close for input power that is greater than 600 W.

The performance characteristics of the system under solar radiation changes as 500 W/m² from start up to 20 s, 750 W/m² from 20 s to 30 s and 500 W/m² from 30 s to 40 s is shown in Fig. 18 with constant temperature at 25 °C. The variation of inverter frequency and voltage are shown in Figs. 19 and 20. During starting the frequency is fixed at 39 Hz which is obtained from Inverter ANN and the inverter voltage is increased with slope 25 which are obtained using TLBO algorithm when maximum PV is 784 W at G = 500 W/m² and T = 25 °C. The output current, voltage and power of the PV array are shown in Figs. 21–23 respectively. Fig. 24 shows the variation of motor speed with time. It’s shown that the motor speed is increased with solar radiation due to increasing of the inverter frequency. The variation of motor and load pump torque with time is shown in Fig. 25.

To illustrate the effect of inverter type, a comparison between harmonic analysis for inverter voltage and current has been investigated for 2 level and proposed one of 3 level as shown in Figs. 26 and 27 respectively. It’s found that the 3 level inverter has lower harmonic and lower Total Harmonic Distortion (THD) as summarized in Table 6.

Table 6

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>3 Level inverter</th>
<th>2 Level inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inverter voltage (%)</td>
<td>Inverter current (%)</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.63</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
<td>0.06</td>
</tr>
<tr>
<td>7</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>9</td>
<td>0.18</td>
<td>0.24</td>
</tr>
<tr>
<td>10</td>
<td>0.18</td>
<td>0.07</td>
</tr>
<tr>
<td>THD (%)</td>
<td>41.13</td>
<td>4.11</td>
</tr>
</tbody>
</table>

6. Conclusion

In this paper an optimal performance of water pump induction motor connected directly to PV array via three level inverter without storage system is presented. The optimal performance is achieved by controlling the inverter voltage and frequency to obtain maximum power from PV with minimum motor losses using Teaching Learning Based Optimization technique. ANN is built up to have PV maximum power point at any solar radiation and temperature. This maximum power voltage is used as an input signal for other ANN to give optimal inverter voltage and frequency after training by data obtained by TLBO method. The optimal slope of increasing inverter output voltage with constant frequency during starting is obtained using TLBO algorithm. The whole system of PV array, three level inverter, three phase induction motor and centrifugal pump is modeled using MATLAB/Simulink and tested under different radiations. After simulation the optimal inverter voltage and frequency to obtain PV maximum power with minimum motor losses are obtained and ANN is built up to make the controller adaptive at different solar radiation and temperatures.

References

ETAP11. Motor Load Model Library Model.

