

Post Doctoral Research Fellowship

Research Group Workshop 15 to 16 August 2012 **DUT, Steve Biko Campus** Prof Jannie Maree Rand Water Professorial Chair Department of Environmental, Water and Earth Sciences

Tshwane University of Technology

We empower people

Four point plan for the AMD problem J P Maree

www.tut.ac.za

Live your life. Create your destiny.

Effluent treatment needs

- Neutralisation
- Desalination
 - Membranes
 - -Chemical
- Brine treatment
- Sludge processing

Neutralisation

- Short term solution R924 million
- Environmental risk
- Health risk

Limestone neutralisation – Water A

Limestone neutralisation – Water B

Chemical composition of feed and treated water and alkali cost.

Parameter	Western Basin			
	Feed		Treated	
		Opti	on 1	Option 2
		(CaCO3	for Free	(Only lime)
		acid and	d Fe(II);	
		Lime for	metals)	
		CaCO ₃	Lime	Lime
Flow (MI/d)			25	25
Dosage (mg/l)		3 940	515	2 917
Price (R/t)		449	2 000	2 000
Cost (R/m3)		1.77	1.03	5.83
Cost (R/m3)			2.80	5.83
Cost (R/year)		25 550 002 53 226 5		53 226 517
Cost ratio			0.48	1.00
рН	2.9	6.6	9.2	9.2
Alkalinity (mg/l as CaCO3)		100	200	200
Sulphate (mg/I as SO4)	4800	2 701	2 285	2 285
Chloride (mg/l as Cl)	37	37	37	37
Sodium (mg/l as Na)	50	50	50	50
Magnesium (mg/l as Mg)	147	147	147	147
Free acidity (mg/l as CaCO3)	979	0	0	0
Aluminium (mg/l as Al)	6	0.0	0.0	0.0
Iron(II) (mg/I as Fe)	625	10.0	0.0	0.0
Iron(III) (mg/I as Fe)	100	0.0	0.0	0.0
Manganese (mg/l as Mn)	228	228.0	0.0	0.0
Calcium calc (mg/l as Ca)	602	720	760	760
TDS (calc) (mg/l)	5 995	3 954	3 410	3 410

Recommended solutions by CSIR/TUT

Short term

- Use CaCO3 for removal of free acid, iron(II), iron(III) and aluminium(III)
- Use lime for removal of other metals

Desalination

Desalination(1)

- Ultra Filtration/Reverse Osmosis + Freeze Desalination for brines
- Chemical desalination (water treatment + processing of sludges to valuable products)
 - CSIR ABC (alkali-barium-calcium) process
 - TUT MBA (magnesium-barium-alkali) process
 - TUT NB (ammonium hydroxide-barium hydroxide) process
 - MINTEK SAVMIN process (Ettringite)

Desalination (2)

 Resin processes -GypCIX **—EARTH** Electrolytic -Ecodose -P2W

Cost of desalination technologies (

	Running		Differen
Technology	cost	Income	ce
	R/m ³	R/m ³	R/m ³
CSIR ABC (Alkali-Barium-Calcium) Process	4.04	3.56	-0.49
KeyPlan HiPRO Process	9.12	3.35	-5.78
AR Technologies Sodium Carbonate Reverse Osmosis			
Process (ARRO)	12.79	4.29	-8.51
Mintek SAVMIN	11.3	3.84	-7.46
EARH Ion Exchange	12.95	10.7	-2.25
Paques Thiopaq Process/CSIRosure	8.73	5.7	-3.03
Biosure	8.73	6.12	-2.61
TUT/CSIR MBA (Magnesium-Barium-Alkali) Process		1	
(laboratory stage)	2.22	5.58	3.36
Lime treatment for Industrial water	5.5	0.7	-4.8

CSIR ABC Desalination process (Alkali-Barium-Calcium)

- Lime and/or CaS pre-treatment
- Barium treatment for SO4 removal
- Sludge processing

Western Utilities Corporation pilot plant to evaluate ABC process

Water quality of decant water

Parameter	Feed (<i>mg</i> /ℓ)	Treated (mg/l)	Recommended
pН	3.1	7.5	
Sulphate	4510	250	500
Chloride	37	37	200
Free acid	500	0	
Sodium	96	95	150
Potassium	3	4	
Magnesium	113	2	
Calcium	559	30	
Silica	36	6	
Manganese	174	1	1
Iron(II)	1100	0	1
Iron(III)	200	0	0
Aluminium	6	0	1
Zinc	11	0	0.05
Nickel	18	0	0.01
Cobalt	7	0	0.01

Sludge processing

Gypsum from fertilizer industry

Sulphur import	1 000 000	t/a	and the second
Price	2 000	R/t	
Cost of sulphur for SA	2 000 000 000	R/a	
SA Total imports	70 800 000 000		
Precentage	2.8		

SO₂ from power stations

•2 360 000 t/a SO2 •1 180 000 t/a S

South Africa Power Stations: Arnot - 2100 MWe Duvha - 3600 MWe Hendrina - 2000 MWe Kendal - 4116 MWe Kriel - 3000 MWe Lethabo - 3708 MWe <u>Majuba</u> - 4110 MWe Matimba - 3990 MWe <u>Matla</u> - 3600 MWe Tutuka - 3654 MWe

Brine treatment

Hybrid ICE Freeze Crystallization

Table 2: Energy utilization

Parameter	Value
Energy to cool water from 25 to -2degC (kJ/kg	g) 113.4
Energy to freeze water (kJ/kg)	333.0
Total energy (kJ/kg)	446.4
Total energy (kWh/t ice)	124.0

Game Reserve put at risk

Neutralised mine water

- Stimulate mining industry and protect the environment
- Neutralise AMD at 50% the cost of HDS treatment – Short term
- Desalinate AMD when needed for drinking water – Long term
- Minimise pumping cost

Approach to solution

Understand the problem – segments
Cost alternative options

Water quality from gold mines in Gauteng

		Western	Eastern	Central
Parameter		basin	basin	basin
		Rand		
		Uranium	Grootvlei	ERPM
		IRB		
Flow	(MI/d)	20	108	60
Flow	(m3/h)	833	4500	2500
рН			8	3.5
Free acidity	(mg/l as CaCO3)	700	0	300
Iron(III)	(mg/l as Fe)	100	0	
Aluminium	(mg/l as Al)	6.4	0	3
Total acidity	(mg/l as CaCO3)	2 437	183	1 749
Iron(II)	(mg/l as Fe)	800	102	800
Total/Free acidity		0.29	0.00	0.17
Alkalinity	(mg/l as CaCO3)	0	350	
Sulphate	(mg/l as SO4)	4800	1075	4096
Calcium	(mg/l as Ca)	528	216	582
Magnesium	(mg/l as Mg)	147	128	250
Manganese	(mg/l as Mn)	228	2	15
Zinc	(mg/l as Zn)	11.9		4
Cobalt	(mg/l as Co)	4.55		1.5
Nickel	(mg/l as Ni)	18		5
Copper	(mg/l Cu)	21		
Uranium	(mg/l U)	0.465		
Silicon	(mg/l Si)	11		22
Barium	(mg/l Ba)	0.2		1
Chloride	(mg/I as CI)	37.03	157	180
Sodium	(mg/l as Na)	50	202	104
Potassium	(mg/l as K)	1	S	14
TDS	(mg/l)	6777.1	2 092.0	6 060.6

Components of AMD

- $4\text{FeS}_2 + 14\text{O}_2 + 4\text{H}_2\text{O} \rightarrow 4\text{FeSO}_4 + 4\text{H}_2\text{SO}_4$
- Free acid: H₂SO₄ already partially neutralised Can be neutralised with CaCO₃ (R300/t)
- 2. Fe(II) acid: Cannot react with limestone/dolomite; No sinkholes from Fe(II): Can be neutralised with CaCO₃ (R300/t)
- 3. Low concentrations of heavy metals

Lime treatment only needed for removal of heavy metals (lime; R2100/t)

4. Salt (Ca, SO₄)

Desalination only needed when water demand > water supply

Decant water from gold mines in Gauteng

Basin	Flow rate (Ml/day)
Far Western	65
Western	60
Central	100
Eastern	120+
Total for Gauteng gold mines	345+
Mpumalanga coal mines	80+

PUMPING OR NOT

Views on Pumping

View 1 – Pump to below ECL level

- Allow future mining and protect tourist sites (Gold Reef City)
- No ground water pollution
- No damage to foundations
- Storage capacity/Flow equalization for treatment plant

View 2 – Allow water to decant

- Reduced dissolution of CaCO3 in ingress water
- Reduced pyrites oxidation

Pumping cost

	Equalization
Total	pond
188	188
310	0
0.84	
57 887 175	
211 460 000	290 482 666
	Total 188 310 0.84 57 887 175 211 460 000

 $P_{h} = q \rho g h / (3.6 \times 10^{6})$ where

 P_h = power (kW); q = flow capacity (m³/h); ρ = density of fluid (kg/m³); g = gravity (9.81 m/s²); h = differential head (m)

Recommendation: Determine whether ECL levels can be moved to higher levels

Revisit the importance of the ECL level

- Iron(II), main compound in AMD, des not react with CaCO₃
- Free acid in AMD is already partially neutralized
 - Western basin 58%
 - Central basin 79%
 - Eastern basin 99%
- Less CaCO₃ will dissolve in Ingress water when mine water is just below the decant point.

Pumping cost

			Equalization
	Total	Decant	pond
Flow (MI/d)	188	188	188
Head, h (m)	310	30	0
Electricity cost:			
Electricity cost (R/m ³)	0.84	0.08	
Electricity cost (R/a)	57 887 175	5 609 685	
Capital cost:			
Pump capital cost (R)	211 460 000	20 492 000	290 482 666

$P_{h} = q \rho g h / (3.6 \times 10^{6})$ where

 P_h = power (kW); q = flow capacity (m³/h); ρ = density of fluid (kg/m³); g = gravity (9.81 m/s²); h = differential head (m)

Recommendation: Determine whether ECL levels can be moved to higher levels

Problems/Solutions to rising levels of acid mine water

Problem	Solution
Ground water pollution	Supply owners with water from the Rand water distribution network
Damage to foundations	Injection of clean water

Lake Cospuden

Lake Cospuden is a completely rehabilitated, open-cast, lignite mine. The lake is now popular for cycling (circumference: 13 km), sailing and has a restaurant. As the water in the lake has a higher level than that of the groundwater, it is not polluted by acid mine drainage.

Proposed solution

- Stimulate mining industry and protect the environment
- Neutralise AMD at 50% the cost of HDS treatment Short term
- Desalinate AMD when needed for drinking water Long term
- Minimize pumping cost

Other tasks

- Natural organic matter
- Alternative technologies
- Global warming
- Legal studies

ACKNOWLEDGEMENTS

Technology and Human Resources for Industry Programme (THRIP) Tshwane University of Technology (TUT) Key Structure Holdings

Tshwane University of Technology We empower people

www.tut.ac.za

Live your life. Create your destiny.